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t ron  current i n  the  diode i s  controlled by a magnetic f 

analyzed. 

eld, whi c h 

cons t i tu tes  the  means of providing f o r  regenerative feedback i n  an os- 

c i l l a t o r  c i r cu i t .  With the  use of experimentally determined character-  

i s t i c s  of a magnetically control led diode, t he  d i f f e r e n t i a l  equations 

governing the  c i r c u i t  a re  solved numerically f o r  several  se lec ted  diode- 

c i r c u i t  combinations. It was shown from these  calculat ions t h a t  an os- 

c i l l a t i n g  current output can be obtained, and t h a t  t h e  current was f u l l y  

modulated from nearly zero t o  nearly the  m a x i m u m  obtainable i n  steady- 

s t a t e  operation. 

of t h a t  obtainable from constant-current operation, and consisted of 

The grea tes t  calculated power output was 36 percent 

58 percent dc power and 42 percent ac power. 
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ABSTRACT 

A device f o r  producing ac power from a plasma diode i s  analyzed. 

Electron current i n  the  diode i s  controlled by a magnetic f ie ld ,  which 

cons t i tu tes  the  means of providing f o r  regenerative feedback i n  an os- 

c i l l a t o r  c i r cu i t .  With the  use of experimentally determined character-  

i s t i c s  of a magnetically control led diode, the  d i f f e r e n t i a l  equations 

governing the  c i r c u i t  a r e  solved numerically f o r  several  selected diode- 

c i r c u i t  combinations. It was shown from these calculat ions t h a t  an os- 

c i l l a t i n g  current output can be obtained, and t h a t  t he  current was fully 

modulated from nearly zero t o  nearly the maximum obtainable i n  steady- 

s t a t e  operation. The grea tes t  calculated power output was 36 percent 

of tha t  obtainable from constant-current operation, and consisted of 

58 percent dc power and 42 percent ac power. The frequency of o sc i l l a -  

t i o n  w a s  near ly  equal t o  t h a t  obtained from l i n e a r  c i r c u i t  theory. The 

l i n e a r  c i r c u i t  theory a l so  yielded a c r i t e r i o n  f o r  the onset of o sc i l -  

l a t i ons .  

INTRODUCTION 

For generation of e l e c t r i c a l  power i n  space d i r e c t l y  from a p r i -  

mary source of energy, there  a re  proposed so la r  ce l l s ,  f u e l  ce l l s ,  

thermoelectr ic  converters, radioisotope ce l l s ,  and thermionic convert- 

ers;  a l l  of these produce d i r ec t  current. Alternat ing current can be 
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produced by passing the  output of these devices through an inve r t e r  such 

as a so l id-s ta te  device. 

state inve r t e r s  (-425' K )  i s  suf f ic ien t ly  low so that  t h e  accompanying 

space r ad ia to r s  may prove t o  be inconveniently large.  With the  therm- 

ion ic  converter it i s  possible t o  produce a l t e rna t ing  current d i r e c t l y  

by several  means, one of which i s  by modulating the  plasma diode current 

with an imposed a l te rna t ing  magnetic f i e l d  (Ref'. 1). 

study i s  t o  show t h a t  a self-exci ted and magnetically control led diode 

w i l l  produce an a l t e rna t ing  current of l a rge  amplitude, t o  f i n d  some of 

the operating charac te r i s t ics ,  and t o  show some of t he  design consider- 

a t ions  of t h i s  device. 

A t  present, the operating temperature f o r  sol id-  

The purpose of t h i s  
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SYMBOLS 

un i t s  a r e  mks unless otherwise noted. 

magnetic f i e l d  

capacitance 

emi t te r  diameter 

thickness  of high permeability c o i l  sh ie ld  

e lec t ron  charge 

co i l - sh ie ld  factor ,  Eq. (13) 

height  of diode 

current  (see Fig. 3) 

current  (see Fig. 3) 

current  densi ty  

Boltzmann constant 

inductance 
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l i n e a r  t u rn  density of f i e l d  c o i l  

power 

radiant  and conductive heat loss 

charge on capacitor i n  steady-state operation 

re s i  stance of c i r c u i t  element 

res is tance of control  c o i l  

i n t e rna l  res is tance diode 

electrode spacing (see Fig. 1) 

period of o sc i l l a t ion  

emit ter  temperature 

time 

voltage across diode 

thickness of control  c o i l  

feedback coef f ic ien t  

eff ic iency 

permeability of f r e e  space 

r e s i s t i v i t y  

work function of emitter 

Sub scr ip ts :  

a 

a 

m 

0 

S 

U 

1 9 2  

a c  portion of output or  c i r cu i t  

dc portion of output o r  c i r cu i t  

mean value 

equilibrium value 

steady operation (constant current w i t h  B = 0 )  

unsteady operation 

diode 1, diode 2 
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DIODE CHARACTERISTICS 

A sectioned view i s  shown i n  Fig. 1 of pa r t  of a cy l indr ica l  diode. 

Not shown are  the  heat source, cesium reservoir,  ex te rna l  c i rcu i t ry ,  

electrode spacers, end s t ructures ,  e tc .  The cesium gas i s  assumed t o  

be ionized e i t h e r  on the hot emit ter  surface or i n  the  in te re lec t rode  

space, thus providing ions which tend t o  neut ra l ize  the e lec t ron  space 

charge. The decrease i n  space charge then r e s u l t s  i n  a l a rge r  output 

current and ex terna l ly  delivered power. However, a f i e l d  c o i l  wound 

solenoidally around the  diode conducts a current which generates the 

ax ia l ly  directed magnetic f i e l d  shown on the  f igure.  

t u r n  back some of the  emitted electrons t o  the  emitter.  The amount of 

t he  reduction of e lec t ron  current by the magnetic f i e l d  w i l l  depend on 

the  s t rength of the f i e ld ;  thus the current i n  the  c o i l  a s  wel l  a s  t he  

diode voltage w i l l  serve t o  control the diode current. A s e t  of diode 

cha rac t e r i s t i c s  of t h i s  type i s  shown i n  Fig. 2, which i s  reproduced 

from Fig. 9 of Ref. 2. 

This f i e l d  w i l l  

Also shown are  regions where a l te rna t ive  modes of operation are  

possible  (displayed by the double valuedness of the curves). 

mode of operation (high currents  and low vol tages)  occurs when avalanche 

ion iza t ion  of t he  cesium takes place i n  the  in te re lec t rode  region. 

extinguished mode (low currents  and high vol tages)  occurs when ionizat ion 

occurs ch ief ly  a t  the  emit ter  surface. The mode ac tua l ly  a t ta ined  depends 

on the  past  h i s tory  of operation i n  t h a t  as  the output voltage i s  reduced 

the  extinguished mode tends t o  pe r s i s t  i n t o  the double-valued region t o  

some point  where the a r c  i s  struck (see  Ref. 2);  the  path of the  t r a n s i -  

The a rc  

The 
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* t i o n  i n  the  current voltage plane depends on the  ex terna l  c i r cu i t ry ,  

This par t icu lar  s e t  of data was obtained from a cy l indr ica l  diode 

0 with a thorium impregnated tungsten emitter a t  1800 

molybdenum col lec tor  at  650 K, and a ces ium reservoi r  temperature of 

425' K. 

K, a cesium coated 

0 

The electrode spacing was 1 millimeter. 

EXTERNAL CIRCUITFE AND ALTERNATING-CURREX!T GENERATION 

One method of generating a l te rna t ing  current with diodes i s  by t he  

magnetic coupling of two diodes as shown schematically i n  Fig. 3, where- 

i n  the  current through each diode, I + i, passes through the  f i e l d  c o i l  

of inductance L t h a t  controls t he  other diode; i stands f o r  e i the r  

i o r  i The control c o i l  res is tances  are  shown separately as  

and R i s  the  ac load resistance.  The coupling of the  c i r c u i t  t o  t he  

ac load may be other  than a simple resistance,  of course, but idea l ly  

any load c i r c u i t  should be designed t o  reac t  as a pure resis tance a t  

t h e  normal frequency, which w i l l  be shown t o  be the  na tura l  frequency 

of t he  diode c i r c u i t  loops. 

RL' 1 2' 

a 

To analyze the  c i r c u i t  of the  tandem-diode generator, it i s  con- 

venient t o  consider the current loops shown i n  Fig. 3. The governing 

equations f o r  loops 1 and 2 are, respectively, 

V & = R L ( I  + il) + L d(I  + i,)/dt + (il - i 2 ) R a  + J(il/C)dt (1) 

2 = R L ( I  + iz) + L d(1  + i g ) / d t  + (iz - i l )Ra  + S ( i , / C ) d t  ( 2 )  

For the  S-shaped loop containing the  two diodes, t he  equation i s  

v + v2 = ( Z R ~  + R ~ ) I  + (ZL + Ld)(dI/dt)  + RL(i l  + i2) + L d ( i l  + i 2 ) / d t  1 
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The sum and difference of Eqs. (I) and ( 2 )  a re  

V + Vz = 2(L d/dt + R L ) I  + (L d/dt + RL + & / C ) ( i l  + i2) ( 4 )  1 

V1 - V2 = ( L  d/dt + 2Ra + RL +&/C)(i ,  - i2) ( 5 )  

The set of Eqs. (3), (4),  and (5)  i s  general, and t h e i r  numerical 

solut ion f o r  spec i f i c  current-voltage cha rac t e r i s t i c s  w i l l  be described 

i n  a l a t e r  section. 

tage on t h e  current and magnetic f ie ld ,  t he  equations are not suitable,  

without simplification, f o r  s t a b i l i t y  analysis  of t he  system. 

Because of t he  complex dependence of t he  diode vol- 

The small o s c i l l a t i o n  approximation i s  su i tab le  f o r  invest igat ion 

of t he  s t a b i l i t y  of the c i r cu i t .  

s tate solut ion f o r  Eqs. (3), (4 ) ,  and (5) upon which may be superimposed 

a small amplitude perturbation. The steady-state condition can be estab- 

l i shed  by temporarily removing the  r e s i s t o r  R ( i . e . ,  R = m) so that 

the  time-dependent currents  i and i cannot flow. The voltage V 

and the current I of the steady-state are r e l a t ed  t o  the charge 

It i s  assumed that there  i s  a steady- 

a a 

1 2 0 

90 0 

on each capacitor by Eq. (3), which now reads 

vo = Io(% + Rd/2) 

4 0 /c = IoRd/2 

and by t h e  equation f o r  the outer  loop i n  Fig. 

When the r e s i s t o r  R i s  replaced i n  the 
a 

3, 

c i r cu i t ,  t he  currents  

i and i w i l l  begin t o  flow as well as, possibly, a perturbation 

AI The voltages gener- 

ated by the  diodes depend on the  currents flowing i n  them and the  mag- 

n e t i c  f i e l d s  impressed on t h e m .  To a l i n e a r  approximation the  voltage 

1 2 
i n  the  S-shaped loop containing the  diodes. 
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produced by diode 1 i s  

V (I + AI + il,B1) = Vo + (AI + i,)(aVo/aIo) + (AI + ~ , ) ( a V o / a B o ) ( ~ B o & )  

"he der ivat ive 

1 0  

i s  the  i n t e r n a l  res is tance of t h e  diode at t h i s  equilibrium condition. 

Similarly, 

i s  the  feedback coeff ic ient  f o r  the  diode. If it i s  assumed t h a t  t he  

magnetic f i e l d  within the  diode can be approximated by that  of an i n f i -  

n i t e  solenoid, then 

where p0 i s  the vacuum permeability and n i s  the  tu rn  density of t he  

control  co i l .  Thus the feedback coeff ic ient  depends both on t h e  sens i t i -  

v i t y  of the diode voltage t o  the  magnetic f i e l d  and the  tu rn  density of 

t he  control  co i l .  I n  terms of the  parameters r and /3 the diode vol- 

tages  a re  

v (I + AI + il,B1) = Vo - r(AI + i l l  - P(AI + i2> 1 0  

V 2 ( I o  + DI + i2 ,B2)  = V - r(AI + i2) - P(AI + il) 
0 

Subst i tut ion of Eqs. ( 6 )  and ( 7 )  into Eq. (5)  y i e lds  

( L  d/dt - B + r + RL + 2Ra +Jdt/C)(i, - i2) 

or, as a purely d i f f e r e n t i a l  equation, 

d2/dt2 + ( -p  + r + % i. 2Ra)d/dt + 1 / C  (il - i2) = 0 1 
The current  difference 

load Ra; therefore,  examination of Eq. (8)  w i l l  reveal  t he  growth of 

il - i2 i s  t h e  current flowing through the  ac 
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‘ a c  power i n  the  c i r cu i t .  The d i f f e r e n t i a l  operator i s  that  f o r  a har- 

monic o s c i l l a t o r  which predic t s  growth of t he  o s c i l l a t i o n s  when the  

r e s i s t i v e  term i s  negative, i .e . ,  f o r  

p > r + % +  2Ra (9) 

Thus f o r  t he  c i r c u i t  t o  a c t  as an ac generator, t he  feedback coef f ic ien t  

must be la rge  enough t o  overcome the  d iss ipa t ion  occuring within the  

diode and the  e f f ec t ive  ac load. 

The period T of t he  osc i l l a t ions  i s  given by 

and t h e  t i m e  i n  which they grow by a f a c t o r  

Because the ac power generation depends on i - i it i s  g rea t e s t  when 

i and i which a re  equal i n  magnitude by symmetry, a re  of opposite 

phase. The perturbation AI, i f  it appears i n i t i a l l y ,  damps out w i t h  

e 

1 2’ 

i s  2L/(p - r - % - ZR,). 

1 2’ 

time a t  a decay rate of (2% + 2 r  + ZP + R ~ ) / L ~ .  

b i l i t y  (Eq. ( 9 ) )  appl ies  only t o  the  i n i t i a l ,  o r  small-amplitude, o sc i l -  

The c r i t e r i o n  of ins ta -  

l a t ion .  

i s t i c s  of t he  system. 

The l imi t ing  amplitude i s  determined by the  nonlinear character-  

PARTICULAR CASE 

To show tha t  a l t e rna t ing  current can be generated by the  means pro- 

posed, and t o  determine the  configuration required t o  do so, the  opera- 

t i o n a l  cha rac t e r i s t i c s  of a par t icu lar  design of diode a l t e rna to r  were 

ca lcu la ted  by using diode charac te r i s t ics  described i n  Ref. 2. The da ta  

from R e f .  2 which seemed su i tab le  for the  purposes here were f o r  an emit ter  
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0 ' temperature of 1900' K, co l lec tor  temperature of 720 K, and a cesium 

reservoir  temperature of 450' K. 

parameters were f i t t e d  with t h e  following expressions: 

Arc: 

The curves f o r  these values of t he  

1 + exp 5 ( V  + 4OB - 1.126g L 
Extinguished: 

4 
1.615xJ-0 

+ ( 1 5 8 B ) q b  + expp(V - 1.5084] 

where B i s  i n  webers per square meter, V i s  i n  vol ts ,  and j i s  i n  

amperes per square meter. It i s  not clear i n  Ref. 2 whether t h e  low 

voltage region f o r  these pa r t i cu la r  charac te r i s t ics  i s  one of double- 

valued currents,  such as it i s  f o r  the cha rac t e r i s t i c s  shown i n  Fig. 2. 

The ca lcu la t ions  made by using Eqs. (11) and ( 1 2 )  were nevertheless 

programmed t o  include the  poss ib i l i t y  of such a region, but no operating 

poin ts  were found there.  Thus, f o r  the present purpose these curves m y  

be regarded as s ingle  valued, and f o r  a given voltage and magnetic f i e ld ,  

t h e  l a r g e r  of t he  currents  from Eq. (11) and ( 1 2 )  may be used. After se- 

l e c t i n g  these cha rac t e r i s t i c s  from Ref. 2 the  values of t he  other  diode 

parameters were assigned. The selected values ( see  Fig. 1) were an emit- 

t e r  diameter D of 4 centimeters, a height h of 1 6  centimeters, a cop- 

per  f i e l d  c o i l  of thickness w = 1.0 centimeter, (assumed t o  be operating 

a t  a temperature of 500' C ) ,  and a high permeability cy l indr ica l  c o i l  
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' s h i e ld  of thickness d = 0.3 centimeter (assumed t o  halve t h e  reluctance 

of the  magnetic c i r c u i t ) ,  The f i e ld -co i l  t u r n  densi ty  n was chosen a t  

75 t u r n s  per meter by t r ia l  and error ,  i n  order t o  provide su f f i c i en t  feed- 

back t o  maximize the  usable ac power with consideration of t he  f i e l d - c o i l  

losses. For these conditions, L = 2 . 3 6 ~ 1 0 - ~  henry and % = 0.7~10-~ ohm. 

Optimum power output was achieved with a dc load per diode (5 + Rd/Z), 

and an ac load (% + 2Ra) each equal t o  4 . 5 ~ 1 0 ' ~  ohm, which i s  the  value 

far maximum gower w i t h  constant diode current and zero magnetic f i e ld .  

A t  t he  mean operating point determined by t h e  foregoing load res i s tance  

and c o i l  inductance, the  feedback f ac to r  p and in t e rna l  diode resis tance 

r are  approximately 7. 5x10'3 and 2.5~10'~ ohm, respectively.  Frequency 

of o sc i l l a t ion  was adjusted by means of t he  capacitors shown i n  Fig. 3. 

Numerical solut ions of t he  general c i r c u i t  Eqs. ( 3 ) ,  (4), and (5)  

supplemented by the  diode charac te r i s t ics  (Eqs.  (11) and ( 1 2 )  ) are shown 

i n  Figs. 4 t o  6 f o r  three different  operating frequencies. Paths of opera- 

t i o n  i n  the  voltage-current plane are shown by curves i n  Figs. 4(a), 5(a) ,  

and 6(a) ;  arrows indicate  succession of operating s ta tes .  Generally, 

these curves are open f igu res  w i t h  one crossing point.  They show the  

presence of subs tan t ia l  even harmonics by the arching and by the  double- 

loop charac te r i s t ic .  Moreover, t h e  even harmonics, when large, produce 

an accompanying steady current t h a t  s h i f t s  the  mean operating point from 

i t s  pos i t ion  on the  load l i n e  f o r  l inear  osc i l la t ions .  Despite the pres- 

ence of these nonlinear effects ,  the base frequency i s  very close t o  t h a t  

predicted by l inear ized  theory (Eq. (10) ). 

The corresponding time p lo t s  of voltage and current shown i n  Figs. 4(b), 
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5(b),-and 6(b) .  The current i s  seen t o  be more near ly  sinusoidal than 

the  voltage curve, which exhib i t s  t he  appearance of la rge  harmonic compo- 

nents. 

rninimum where t r a n s i t i o n  from the  a rc  t o  the  extinguished mode occurs. 

This spike reduces the  ac power output because the  a c  component of cur- 

r en t  i s  negative a t  t he  same t i m e .  At low frequency (Fig. 6 (b) )  the  ac 

Par t icu lar ly  noticeable are  the voltage spikes near t he  current 

power output (47.4 w )  i s  l a rge r  than tha t  a t  high frequency (29.5 w, 

Fig. 4 ( b ) )  because the  form of the  current var ia t ion  i s  closer  t o  a 

square wave, 

were 0.70 a t  low frequency and 0.47 a t  high frequency. 

pends on t h e  current and voltage waveforms, and the  degree of modulation 

of the current by the  magnetic f i e ld ;  f o r  a f u l l y  modulated s ine wave or 

square wave, t he  power r a t i o  has values of 0.5 and 1.0, respectively, as 

shown i n  the  next section. 

Calculated values of the r a t i o  of ac t o  dc power (P  /P ) 

This r a t i o  de- 
a d  

The t o t a l  power output of the diodes depends on t h e  scale of t he  

device; therefore,  t he  ac and dc power outputs f o r  the cases calculated 

here are given i n  table I as r a t i o s  t o  the  m a x i m u m  steady-state (B = 0 )  

power output Ps of the  diodes. The scale  of t h e  device assumed corre- 

sponds t o  P = 322 watts per diode. These data  confirm that  an advan- 

tage  can be achieved i n  both ac  and dc power i f  the external  c i r c u i t  i s  

designed t o  achieve an approximation t o  a square wave current. 

S 

For a given t o t a l  l oad  resistance the a c  power increases rapidly 

w i t h  t u r n  density from zero, f o r  a value of n such t h a t  p = r + 2R + I$, 

t o  the power a t  nearly m a x i m u m  current amplitude; a fur ther  increase i n  

merely increases the c o i l  loss.  

a 
n 

For example, of two cases with 
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R + 2R = 4.5~10-~ ohm, the  one with an n of 72.5 tu rns  per  meter 
L a 

developed an ac current amplitude of 150 amperes, while t h e  other  de- 

veloped an ac current amplitude of 230 amperes when n was increased 

t o  75 tu rns  per meter. The control-coi l  l o s ses  are a r b i t r a r y  i n  t h a t  

they depend d i r e c t l y  on how much metal one i s  wi l l i ng  t o  use; f o r  t he  

dimensions assumed i n  the  present case, t he  losses  were approximately 

1 6  percent of t h e  diode output. 

SOME DESIGN CONSIDERATIONS 

Scaling 

The results described thus far are l imi ted  t o  a diode of spec i f i c  

s i ze  and proportion. The question arises as t o  what i s  the  e f f e c t  of 

s i ze  on the  generator charac te r i s t ics .  

i n t e r i o r  t o  different  s ized diodes are expected f o r  t he  same electrode 

materials,  emitter,  col lector ,  and cesium reservoir  temperatures, spac- 

ing, current  density, magnetic f ie ld ,  and voltage. Then since I = jflDh, 

t h e  res i s tance  a t  the  diode terminals i s  

S i m i l a r  operating conditions 

Rd V V R + - =  % + 2 R a = ~ = ~  
L 

~ h u s  l a r g e r  diodes would require smaller res i s tances  varying as l/h~. 

The required magnetic f i e l d  B i s  approximately nIw f, where f i s  

the  f a c t o r  r e su l t i ng  from the  use of the high permeability s h e l l  t o  sur- 

round the f i e l d  co i l s .  The f i e l d  c o i l  res i s tance  i s  then 

0 

Y o  -/ w -  n 



. 

.where p i s  t h e  r e s i s t i v i t y  of t he  coils.  Thus, t he  r a t i o  of control  

d o i l  l o s s  t o  t o t a l  power 54 + 2R ) var ies  as 1 / D  f l / w .  That is, a 
the  control  c o i l  i s  r e l a t i v e l y  more e f f i c i e n t  f o r  l a r g e r  diodes and 

th icker  control  coi ls ,  although o ther  losses, such as heat r ad ia t ion  

and conduction, may be more important. 

Power Consumption and Output 

A comparison of unsteady diode operation with steady operation (no 

magnetic f i e l d )  w i l l  show a reduction of power and eff ic iency which may 

be compared with the  reduction other  methods of conversion of dc t o  ac  

power. 

i s  convenient t o  consider t h a t  t h i s  heat w i l l  be used pa r t ly  i n  e lec t ron  

For the  purpose of estimating the  heat input t o  the emitter, it 

emission, pa r t ly  i n  heat  l o s ses  ( Q )  which include conduction through 

t h e  leads  and s t ructure ,  and also by radiat ion.  

fore, proportional t o  the  net  current, which cons is t s  of t h a t  f r a c t i o n  

The f i rs t  pa r t  i s  there-  

of emitted e lec t rons  having suf f ic ien t  energy t o  surmount the  m a x i m u m  

po ten t i a l  b a r r i e r  within the  diode Vb. (Currents r e su l t i ng  from volume 

ioniza t ion  a re  assumed negl igible . )  Since the b a r r i e r  voltage i n  a rc  

mode i s  the  po ten t i a l  on the  emitter surface, each e lec t ron  removes the  

energy ecp, and the  average k ine t ic  energy 2kTe where cpe i s  the  

emitter work function, e the  electron charge, k i s  Boltzmann's constant, 

and Te the  emit ter  temperature. Thus, f o r  steady-state operation the  

e l ec t ron  cooling lo s s  i s  I (rp + ZkTe/e); whereas f o r  unsteady operation s e  

/ the e l ec t ron  cooling i s  (Iu + i ) ( r p  + 2kT /e). This power va r i e s  from 

The average e lec t ron  cooling loss per cycle 

e e 

zero t o  Is(cpe + ZkTe/e). 

depends i n  general  on the waveform of t h e  diode output current; f o r  t he  
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- most useful waveforms, including f u l l y  modulated sinusoidal and square 

waves, the  average current and corresponding l o s s  a re  approximately one- 

half  the steady-state values. The heat Q does not vary w i t h  t he  cur- 

rent, so t h a t  &u - Qs = Q. Emitter power consumption i s  then 

Q + Is(cpe + 2kTe/e) f o r  steady-state and Q + I,(cp, + 2kTe/e)/2 

osc i l l a to ry  operation. 

thereby seen t o  be r e l a t ive ly  more important when producing a l te rna t ing  

current than when producing d i r ec t  current. 

f o r  

The heat loss  by conduction and rad ia t ion  i s  

The power output Ps i n  steady operation i s  

Ps = ISVS 

I n  unsteady operation there  i s  a dc component of power depending on the  

mean voltage and current 

1 V I  = - P  1 P = V I  = -  #doc m m  4 s s  4 s 

and an ac component 

tage o s c i l l a t i o n  amplitude, waveform, and phase s h i f t .  

u la ted square wave w i t h  no phase sh i f t ,  

Pa, the  value of which depends on current and vol- 

For a f u l l y  mod- 

1 P = - P  a 4 s  

1 
u 2 s  P = - P  

and f o r  a s ine wave 

1 
pa = s ps 

Pu = g Ps 3 

( see  Fig. 7 ) .  
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The ef f ic iency  i s  then r e l a t e d  t o  the  steady-state value by 

This equation ind ica tes  t h a t  the ac e f f ic iency  of a diode w i l l  be 

c loser  t o  the  dc value if  the  rad ia t ion  and conduction lo s s  i s  small 

compared with the  e lec t ron  cooling loss. 

diode design one i n  which the  heat loss  by rad ia t ion  and conduction i s  

one-half t he  steady-state e lectron cooling loss, then f o r  a square wave 

qu/qs = 0.75, and f o r  a s ine wave T ~ / T ~  = 0.56. 

If we assume as an a t ta inable  

CONCLUDING REMARKS 

I n  view of the  s implici ty  and r e l a t ive ly  elevated minimum system 

temperature of t he  self-exci ted ac generating diode and c i r cu i t ,  a com- 

p l e t e  system analysis  might wel l  e s t ab l i sh  that the  ineff ic iency i s  t o l -  

e rab le  f o r  some space power applications.  

The penalty i n  eff ic iency tha t  a r i s e s  from use of the plasma diode 

i n  the  proposed ac power-generating c i r c u i t  i s  the  r e s u l t  of the  par t -  

time power production by the  diode, while rad ia t ion  and conduction heat 

l o s s e s  continue as i n  dc operation. High ef f ic iency  diodes with small 

conduction and rad ia t ion  lo s ses  would be most suitable f o r  t h i s  i n t e r -  

m i t t  ant use. 

Some improvement by reduction i n  s i ze  of the  f i e l d  c o i l  and elimina- 

t i o n  of the  high permeability f i e ld -co i l  sh ie ld  might be achieved by opt i -  

mization of e lectrode spacing and cesium vapor densi ty  t o  obtain an in-  

creased s e n s i t i v i t y  t o  the  magnetic f i e ld .  

Another fea ture  of ac power generation by magnetic control  of a diode 
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- output i s  t h e  continued production of a dc component of power, which i s  

a t  l e a s t  as grea t  as t h e  ac component. 

fore, b e t t e r  su i ted  f o r  appl icat ion t o  s i t u a t i o n s  i n  which both t h e  dc 

power and t h e  ac power can be used. 

This diode o s c i l l a t o r  is, there-  
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